PHYSICAL REVIEW E VOLUME 57, NUMBER 2 FEBRUARY 1998

Nearest-neighbor functions in a one-dimensional generalized ballistic deposition model
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We derive exact expressions for the nearest-neighbor probability functions for configurations of disks on a
line generated by a generalized ballistic deposition process. The presence of clusters of disks profoundly
modifies the nearest-neighbor functions compared with those of cluster-free configurations. We generalize
theorems on ergodic ensembles of isotropic packing of particles to cases where clustering of particles occurs.
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. INTRODUCTION andGy to Hy by

Nearest-neighbor distribution functions of many-particle H
systems, which provide the probability of finding a nearest GV=—V.
neighbor at a given distance from some reference point, are 2pEy(r,t)
indispensable in the study of the liquid state and amorphous
solids[1-7], transport processes in heterogeneous materiatshus, from the knowledge of eithét, or E,, one can derive
[8,9], and spatial patterns in biological systefs)]. exact expressions for the remaining two functions using Egs.

In a pioneering work, Hertg11] obtained exact expres- (1) and(2). Identical equations can be established for particle
sions for the nearest-neighbor functions for a system of ranquantitiesHp and Gp.
domly distributed point particles in a three-dimensional  Although equilibrium configurations of particles represent
space. More recently, Torquato, Lu, and Rubinstedl,  an obvious class of model system, it is also of interest to
showed how to express these functions in terms of thexamine the nearest-neighbor functions of nonequilibrium
infinite  set  of n-particle  density  functions configurations such as those generated by the random se-
P1,P2, - - - pn (N—c°). For the random point model, which quential adsorptioflRSA) process. These systems are also of
has a trivial structure, it is possible to recover Hertz's resulinterest in relation to some general theorems concerning the
by summing the series exactly. Interacting particle systemgean nearest-neighbor distance, which may be readily cal-
are much more challenging since one does not in genergllated from the nearest-neighbor functions, in random pack-
have a complete knowledge of the,}. An important excep- ings of hard particles. These theorems, recently proved by
tion is the class of one-dimensional systems, which are usuForquato[7], suggest that the nearest-neighbor functions for
ally amenable to exact analysis. We note also that accurajgarticles deposited by the RSA mechanism are quite differ-
approximate expressions have been developed for equilient from their equilibrium counterparts. This was confirmed
rium systems of hard disksD(=2) and hard spheres in the recent work of Rintouét al.[12] who obtained exact

@

(D=3) [3]. _ . expressions for the nearest-neighbor functions for configura-
Using the notation of Ref12], the nearest-neighbor func- tions of rods deposited on a line by the RSA process.
tions for the void quantities are defined as followig:H,dr The present paper is motivated in part by the observation

is the probability that at aarbitrary pointin the system the that the theorems of Torquato do not consider the possibility
center of the nearest particle lies at a distance betwesn  of clustering. We first derive the nearest-neighbor functions
r+dr, (i) Ey is the probability of finding a circular cavity of for configurations of disks deposited on a line by generalized
radiusr centered at somarbitrary point empty of disk cen-  ballistic deposition(GBD), an irreversible space filling pro-
ters. (iii) 2pGydr is the probability that, given a region of cess that leads to the formation of connected particle clusters
length 2 centered at aarbitrary pointin the system that is of different sizes. In one dimension, the kinetics and the
empty of rod centers, rod centers are contained in the sheflistribution of cluster sizes have been obtained exddiB}.

of thickness @r enclosing the region. The particle quanti- In two dimensions, the model provides a quantitative de-
ties,Hp, Ep, Gp, are similar except “rod center” replaces scription of adsorbed configurations of colloidal particles on

“arbitrary point” in the above definitions. solid surface$14]. The basic quantities for the GBD model
It follows from the definitions given above th&, is are defined and derived in Sec. Il. The void and particle
related toH,, by the relation functions are then obtaineec. Ill), as well as an exact
expression for the mean nearest-neighbor distance. It is
Ho= @ (1) worth noting that we recover here the results of Rintiudl.
v ar [12] with an approach that is somewhat simpler than that
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employed by these authors. Extended theorems for isotropic L LA
packings are given in Sec. IV. I

) I . (8) Q

Il. GENERALIZED BALLISTIC DEPOSITION MODEL

In one dimension, the GBD model is defined as follows:
hard disks of diametes (set equal to unityare deposited
onto an infinite line sequentially, uniformly, and at a constant
rate per unit length. If a trial particle does not encounter any
preadsorbed disk, it adsorbs with a probabifityOtherwise,
it is rejected. If the trial particle is above a preadsorbed disk,
it rolls towards the surface up to one preadsorbed disk by
following the path of steepest descent; if it eventually
reaches the line, the new disk is accepted with a probability
p’ and if not, it is rejected. Using appropriate dimensionless
variables, one can see that the process depends only on th
ratio a=p'/p: for a=0, only direct adsorption is allowed,
which corresponds to the random sequential adsorption
(RSA) procesg13]. Fora=1, we recover the ballistic depo-
sition model[15]. In the limit a— +, only deposition fol-
lowing contact with a preadsorbed disk is permitted after a
first seed particle is inserted, and this results in a close-
packed configuration. The parameteis thus a measure of
the efficiency of cluster formation.

If p(t) denotes the number density of particles on the line
at dimensionless time, the kinetics of the GBD model is
given by the following rate equation:

Hv(r-t)

Hyr.t)

dp(t)
TR P(I=1t)+2aP,(I=1}), 3
where P(l,t) is the probability density of finding a cavity
(i.e., an empty intervalof diameterat least landP4(l,t) is
the probability of finding a cavity of lengthat least |
bounded on at least one side by a partid¥l,t) is then
simply the cumulative probability function d#,(l,t),

FIG. 1. Hy(r,t) vs the distancer at different times {

P(I,t)= f+xduPl(u t) (4) =1,2,10) and for two values af: (@) a=0.1, (b) a=1.
t1—e U
To determineP(l,t), we note that a cavity of diametér ha(t)=ex;< —f dut+a(l—-t—e™Y|, (7
=1 can be destroyed by inserting particles that can either lie o U

completely within this cavity or can partially overlap the ) _ _
right or the left sides of the cavitjl6]. The time evolution —and the number density of particles is then equal to
of the probability functionP(l,t) can then be expressed as

t
p(t)= fodtl(lJr 2aty)h3(ty). ®

aP(l,t) 1

i =(I—1)P(I,t)+2] duP(l+u,t)
0

Notice that the saturation state is reached exponentially,

p()—p(t)~exp(—2at)/(at), for all nonzero values of,

whereas fom=0 (corresponding to the car parking problem

[17]), the asymptotic kinetics is algebrajg(e) — p(t) ~14.

1
+2af duP;(I+u,t) for I=1. (5
0

Inserting the ansatz

Ill. NEAREST-NEIGHBOR FUNCTIONS
_h2 (-
P(.O)=ha(t)exd — (- 1)t] 6) A. Void quantities
in Egs. (4) and (5) with the initial conditionP(l,t=0)=1 For r<1/2, because multiple overlaps are prohibited,
gives Hy(r,t) is just twice the particle density,
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FIG. 2. Gy(r,t) vs the distancer at different times {
=1,2,10) and for two values af: (a) a=0.1, (b) a=1.

Hy(r,t)=2p(t),

r<1/2.

Combining Egs(1) and(2), one deduces that

Ev(r,t)=1-2rp(1),

1
Gv(f,t)=m,

r<1/2,

r<1/2.
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FIG. 3. Hy(r,t) vs the distance at different times (= 1,2,10)
and for two values ofi: (a) a=0.1, (b) a=1.

Whenr=1/2, sinceE,(r,t) is the probability of finding a
void of radiusr (or diameter 2) empty of rod centers, one
hasg, (r,t)=P(2r—1t) andH,(r,t)=2P.(2r—1).

For 1/2<r<1, one has &2r —1=<1. ThereforeE,(r,t)
and Hy(r,t) are given by the knowledge d?,(l,t) for O
<I|=<1. Considering all ways of creation and destruction of a
cavity of length at leadt bounded on a side by a particle, the
time evolution of the probability functioP,(l,t) can be
expressed as

1
<1,

12

duP,(1+u,t)+ Py (1) —Py(1+1,t)| for

Max(0,1—1)
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where P4(l,t) is the cumulative probability function of Figure 1 display$Hy(r,t) for a=0.1 anda=1.0 andt
P,(l,t). Notice that for 6<lI<1, P,(l,t) depends on prob- =1,2,10. Note the finite discontinuity at=0.5 and the cusp
ability functions for values of>1 that can be derived from atr=1, which increase whea ort gets bigger.
Eq. (6). Following a calculation, one obtains The functionGy(r,t) is shown in Fig. 2. It has the ex-
pected discontinuity at=0.5, consistent with the behavior
PR , of Hy(r,t). In addition, a striking peak emerges in the neigh-
P1(|-t)=zf dt’hz(t")e™" (1+at’)—p(t), (13)  porhood ofr=1 whent is larger than H. As we have
0 previously noted this function is, contrary to appearances at
long times,continuousat r=1 and its apparent divergence
can be understood by examining the behavidd{r,t) and
t Ey(r,t) forr close to 1: From Eq14), the Taylor series for
HV(r,t)=2< f dt’2h§(t’)e‘(Zf‘l)t'(leat’)—p(t)), Hy(r,t) atr=1 givesHy(r,t)=a;+b(1—r) wherea;>0
0 andb>0 anda;<b, if t>1/a. Similarly, one obtains for
14 E(r.t), Ey(r.)=a,+a,(1—r)+b/2(1-r)2 where a,
. >0 and a,=a;. A simple analysis of the ratio
Ev(r,t)=1—2(1—r)p(t)—2J dt’h2(t) Hy(r,t)/Ey(r,t) shows that, although the functidBy(r,t)
0 seems to diverge whenis close to 1, it instead reaches a
maximum value for,=1—+/a,/b and then decreases very

which gives

X (1+ at’)l_ e (2 (15) rapidly between; and 1. Clearly, the presence of clusters on
' ' the line significantly modifies the structufef the void prob-
ability functiong compared with the RSA modgl2]. Spec-
with Gy(r,t) determined fromEy(r,t) andHy(r,t). tacular differences have already been noted in the pair cor-
If r=1, the void quantities are simply obtained from Eq.relations of the GBD moddl16].
6):
©) B. Particle quantities
Ev(r,t)=h3(t)exgd —2(r—1)t], (16) Because of the hard-core interaction that prevents particle
overlap, the particle nearest-neighbor functions have simple
and, therefore, expressions for &r<1:
Hy(r,t)=2th2(t)exd —2(r — 1)t], 17 Ep(r,t)=1, Hp(r,t)=0, Gp(r,t)=0. (19
At r=1, Hg(r,t) has as-singularity due to the existence
Gy(r t):L (18) of particles at contacf13]. Denoting the singular part of
Vil p(t)’ Hp(r,t) atr=1 asHp(r,t)=4&(r —1)hp(t), one finds
4a [t 2 2a® 1 at, [ at e t
= — —_—— —dalp 2| —— —t2
hp(t) p(t)fodtltlha(tl) p(t)fodtlha(tl)e fo dtyh,(ty)e ( 2(1-a) +t,e7 2], (20

ConsequentlyEp(r,t), which is the cumulative probability dfig(r,t), exhibits a discontinuity at=1.
Whenr =1, sinceEg(r,t) is the probability of finding a void of a radius(or diameter 2) empty of rod centers centered
on a rod center, one has

pEp(r,t)=P(r—1r—-1¢%), (21
pHp(r,t)=2P(r—1r—1%), (22

where P(r—1,r—1t) denotes respectively the probability of finding two neighboring cavities of dianatézast r—1
separated by one particle, aRd(r—1r—1t) the probability density of finding two neighboring cavities, one of diameter
r—1 and another of diameteat least |, separated by one particle. Exact expressions of the cavity functifus; 1,r
—1t) andP,(r—1r—1t), can be obtained. Details of the calculation are given in the Appendix.

For 1=r<2, inserting Eqs(A6) and (A7) in Egs.(21) and(22) leads to

t 1—e (-1t e—2at_g—2t;
p(t)Ep(r,t)zJodtlhg(tl)[e_z”_l)tl—Z (1+aty) t1 M T ]
t 1_e_(r_1)t1 tq
+2fodtlha(tl)efat1 (1+atl)T+a fo dtzha(tz)eatz(e*tz_e*(rfl)tz)
e 2aty _ e 2ty
X (1+at2)2(Ta)t2+e"2 , (23

and
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e 2ali_g=2

—2(r=1)ty _ -0ty ~ -
2t.e 2(1+aty)e 2(i-a)

! 2
p(OHR(r,t)= fodtlha(tl)

e 2at_ =2t

[ )
(1+aty) 21-a), +e

t t
—Zf dtlha(tl)e*a‘l(1+at1)e*(’*1>‘1f dtyh,(t,)ed2(e 2—e (T Di2)
0 0

t l_e*(rfl)tl t
_2fodtlha(t1)e*at1 (1+at1)T+a fo dtzha(tz)eatle*(rfl)tz
e 2aty _ e 2ty
- —t
x| (1+aty) 2(1-a) +te7 2, (24)
Using Egs.(19) and(23) one can verify thaEp(r=1—)—Ep(r=1+)=hp.
Forr=2, combining Eqs(21) and(22) and Eq.(A4) yields
hg(t) e-2at_ g2t
Ex(r,t)= e—2(r—2)t’ 5
ATU= 00 2 a (29
2th? t) e-2at_ g2t
Hp(r,t)= al e 2r-2t, (26)

p(t)  2(1-a)

So, forr=2, Gp(r,t) andGy(r,t) are identical and independent iof
It is worth noting that, foa>0, Hp(r,t) andGg(r,t) are discontinuous at=2. Figure 3 shows the regular partldg(r,t)
for a=0.1,1.0 and for different times. A strong peak@g(r,t) occurs forr close to 1(Fig. 4). An argument similar to that
which we have given foG,(r,t) explains this striking behavior. Even for a small valueagfcorresponding to a relatively
weak clustering effect, the nearest-neighbor functions are strongly modified compared to those obtained by an RSA process
[12]. Note that Eq(24) with a=0 corrects Eq(48) of Ref.[12] in which a term is missing in the last line of the equatifig.
4 of Ref.[12] is, however, corregt
Finally, knowledge ofEp(r,t) allows us to calculate the mean nearest-neighbor distarae
hg(t) e72at_ efzt 1— e*211 e~ 2aty _ e 2ty

1t
2tp(t) 2(1-a) *mfodtlha(‘1)| 2, 2 201-a)

)\=1+f drEg(r,t)=1+
1

1 l1-en 2 [t [0 N e 2aly_ g2t :
X| (1+aty)| —— +a +—fdth t)e” 1f dt,h,(ty)e??| (1+aty)——————+e 2
( l) tl t% P(t) 0 1 a( l) 0 2 a( 2) ( 2) 2(1_a)t2
Liat 1-e o [1tat|1-e” 2 [1+42at|1-e7"2 )
X + —— + 2+ — .
(1+aty) t, 2 ale ty t+t, t, t, @

At small densities, the mean nearest-neighbor distance b&he dependence of on p, for several values of the sticki-
comes ness parametex, is illustrated in Fig. 5. The mean distance
N\ between nearest neighbors for the sticky hard rod system
increaseswith a for a given value of the density of particles,
)‘25+1' (28 \whereas\ decreases witha for the GBD model. Conse-
quently, A for the sticky hard rod system, which is smaller
This has the same leading behaip(t) 1] at low density ~ thani for the GBD process wheais small, becomes larger
as the equilibrium sticky hard rod systef®8] at number ~Whena increases. This amazing feature can be interpreted by

densityp, for which the exact expression faris the fact that particle configurations are more correlated at
equilibrium than in the GBD process where deposited par-
—2apP\1+aBP ticles cannot move once adsorbed.
=1+
r=1 eXp(lJraﬁP 2aBP (29

IV. THEOREMS ON ISOTROPIC PACKINGS
whereP is related top by the equation of statel6]:

4ap
+__
\/1 1-p 1

The theorems on isotropic packings of identical
D-dimensional hard spheres derived by Torqyatpbdo not
consider systems in which clusters can be formed. Clusters
. (30 S . . .
occur at equilibrium when interactions between particles

P—l
PP=3a
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(b) i | FIG. 5. Mean distance between nearest-neighbor particles vs
" - density for various values af (a=0,0.11,2). Thefull curves cor-

t —t=t respond to the GBD model and the dashed curves correspond to the
e t=2 4 sticky hard rod model.

t ] Theorem 2 For any ergodic ensemble of isotropic pack-
ings of identical,D-dimensional hard spheres in which clus-
tering is allowed and (% ¢) 1<Gp(r) for 1<r=oe,

Gp(r.t)
I
=4
T

exp(—2PDpG}p)

(32
D2Pp

S A<1+(1-p)

// 1 Proofs of these theorems proceed in a fashion very similar
B & 1 to that in Ref,[7] and are not reproduced here. &¢r) has
o ""T T no simple lower bound for any ergodic hard-sphere system
0 3 4 with clustering, one cannot find a corresponding Theorem 3
r that gives an upper bound for the mean nearest-neighbor dis-

tance[7]. Note that when the singularity iGp disappears,

FIG. 4. Gg(r,t) vs the distance at different times (= 1,2,10) as, for instance, whea goes to 0 in the GBD model, one

and for two values oé: () a=0.1, (b) a=1. recovers, as expected, the results obtained by Torqiato

contain a singular attractive part, as in the sticky hard rod V. SUMMARY
system[18] and in nonequilibrium processes, like the GBD '
model studied here. Using the definition®§(r,t), it is easy We have derived analytic expressions for the nearest-
to convince oneself that for a system of clusters, aneighbor distribution functions associated with a one-
o-singularity arises at contact but at larger distances theimensional configuration of rods generated by a generalized
function G is continuous or exhibits at most finite disconti- ballistic deposition process. The clustering mechanism that
nuities. Therefore, two theorems of R¢L2] should be re- occurs in GBD profoundly modifies the shape of the nearest-
written as follows: neighbor functions. Theorems on ergodic ensembles of iso-

Theorem 1For any ergodic ensemble of isotropic pack- tropic packing of particles have been generalized to include
ings of identical,D-dimensional hard spheres in which clus- the case when clusters are present and were tested against the
tering is allowed an@Gp(1+)<Gp(r) for 1<r=<oo, results obtained for the generalized ballistic deposition

model.
exp(—2°D ¢G})
A1+ Wp(l"':’ (31 ACKNOWLEDGMENTS
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whereGp(1+) denotes the left limit at =1 of the regular grant. The Laboratoire de Physique “Brigue des Liquides
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APPENDIX P(l1,15,t) is then the cumulative probability density of

In order to obtain expressions for the particle nearest! 1(11-12,1) andPa(l4l5,1):

neighbor functions, we introduce three cavity probability .

functions: P(l,1,,t) denotes the probability of finding two N

neighboring cavities, one of diametat least || and another Playla.t) Ll duPy(u,l2,b), (AD)
of diameterat least |, separated by one particlBy(I4,1,,t)

the probability density of finding two neighboring cavities, too

one of diametet, and another of diametet least |, sepa- P(|l,|2,t)=f duPy(l4,u,t). (A2)
rated by one particle, ané,(l,,l,,t) the probability density I2

of finding two neighboring cavities, one of diametdrleast

[, and another of diametdr, separated by one particle. A kinetic equation can be written in a closed form:

&P(|11|2!t) 1 1
—=—[Max(O,Il—1)+Max(O,Iz—l)]P(Il,Iz,t)—f duP(I1+u,I2,t)—j duP(l4,l,+u,t)
at Max(0,1~17) Max(0,1~ 1)
1
+P(l;+1,+1t)—a P[Max(l,ll),lz,t]JrP(Il,Max(l,Iz),t)—f duPy(l1+u,l,,t)
Max(0,1-14)
1
Max(0,1-1,)

The strategy to solve these coupled equations consists of considering the,edkeand |,=1. Using the ansatz
P(l4,1,,t)=F(t)e” (171272t jn Eq. (A3) leads to a time differential equation f&(t), which gives after calculation

e72at_e72t
P12, ) =h3(t) —5 e a2 (A4)
For 0<I|,<1 andl,=1 using the ansatz
P(I1,12,)=ha(t)p(ly,He” 2=, (A5)

and Eq.(A4), Eq. (A3) can be integrated and one obtains
—2at_e—2t

2(1—a)

e 2aty _ e 2ty

(1+at)—————+e™"t

p(l1,0)=hy(t) A (A6)

t
- e*a‘f dtsh,(t;) e (e 1—e1l)
0

For 0<l,<1 andl;=1, P(l{,l,,t) is obtained from Eq(A5) by permutingl, with I..
Finally, for O<l,;<1 and G<l,=<1, Eq.(A3) can also be integrated af{l,l,,t) is expressed as

t 1—e itz 1—e 21
P(|11|2-t):J0dt1ha(t1) ha(tl)e‘“l*'Z)tl—a[p(ll,tl)+p(IZ,tl)]—(1+at1) Tp(|21t1)+Tp(|1at1)”-

(A7)
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