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Nearest-neighbor functions in a one-dimensional generalized ballistic deposition model
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We derive exact expressions for the nearest-neighbor probability functions for configurations of disks on a
line generated by a generalized ballistic deposition process. The presence of clusters of disks profoundly
modifies the nearest-neighbor functions compared with those of cluster-free configurations. We generalize
theorems on ergodic ensembles of isotropic packing of particles to cases where clustering of particles occurs.
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I. INTRODUCTION

Nearest-neighbor distribution functions of many-partic
systems, which provide the probability of finding a near
neighbor at a given distance from some reference point,
indispensable in the study of the liquid state and amorph
solids @1–7#, transport processes in heterogeneous mate
@8,9#, and spatial patterns in biological systems@10#.

In a pioneering work, Hertz@11# obtained exact expres
sions for the nearest-neighbor functions for a system of r
domly distributed point particles in a three-dimension
space. More recently, Torquato, Lu, and Rubinstein@4#,
showed how to express these functions in terms of
infinite set of n-particle density functions
r1 ,r2 , . . . ,rn (n→`). For the random point model, whic
has a trivial structure, it is possible to recover Hertz’s res
by summing the series exactly. Interacting particle syste
are much more challenging since one does not in gen
have a complete knowledge of the$rn%. An important excep-
tion is the class of one-dimensional systems, which are u
ally amenable to exact analysis. We note also that accu
approximate expressions have been developed for equ
rium systems of hard disks (D52) and hard sphere
(D53) @3#.

Using the notation of Ref.@12#, the nearest-neighbor func
tions for the void quantities are defined as follows:~i! HVdr
is the probability that at anarbitrary point in the system the
center of the nearest particle lies at a distance betweenr and
r 1dr, ~ii ! EV is the probability of finding a circular cavity o
radiusr centered at somearbitrary point, empty of disk cen-
ters. ~iii ! 2rGVdr is the probability that, given a region o
length 2r centered at anarbitrary point in the system that is
empty of rod centers, rod centers are contained in the s
of thickness 2dr enclosing the region. The particle quan
ties,HP, EP, GP, are similar except ‘‘rod center’’ replace
‘‘arbitrary point’’ in the above definitions.

It follows from the definitions given above thatEV is
related toHV by the relation

HV52
]EV

]r
~1!
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2rEV~r ,t !
. ~2!

Thus, from the knowledge of eitherHV or EV one can derive
exact expressions for the remaining two functions using E
~1! and~2!. Identical equations can be established for parti
quantitiesHP andGP.

Although equilibrium configurations of particles represe
an obvious class of model system, it is also of interest
examine the nearest-neighbor functions of nonequilibri
configurations such as those generated by the random
quential adsorption~RSA! process. These systems are also
interest in relation to some general theorems concerning
mean nearest-neighbor distance, which may be readily
culated from the nearest-neighbor functions, in random pa
ings of hard particles. These theorems, recently proved
Torquato@7#, suggest that the nearest-neighbor functions
particles deposited by the RSA mechanism are quite dif
ent from their equilibrium counterparts. This was confirm
in the recent work of Rintoulet al. @12# who obtained exact
expressions for the nearest-neighbor functions for configu
tions of rods deposited on a line by the RSA process.

The present paper is motivated in part by the observa
that the theorems of Torquato do not consider the possib
of clustering. We first derive the nearest-neighbor functio
for configurations of disks deposited on a line by generaliz
ballistic deposition~GBD!, an irreversible space filling pro
cess that leads to the formation of connected particle clus
of different sizes. In one dimension, the kinetics and
distribution of cluster sizes have been obtained exactly@13#.
In two dimensions, the model provides a quantitative d
scription of adsorbed configurations of colloidal particles
solid surfaces@14#. The basic quantities for the GBD mode
are defined and derived in Sec. II. The void and parti
functions are then obtained~Sec. III!, as well as an exac
expression for the mean nearest-neighbor distance. I
worth noting that we recover here the results of Rintoulet al.
@12# with an approach that is somewhat simpler than t
1661 © 1998 The American Physical Society
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employed by these authors. Extended theorems for isotr
packings are given in Sec. IV.

II. GENERALIZED BALLISTIC DEPOSITION MODEL

In one dimension, the GBD model is defined as follow
hard disks of diameters ~set equal to unity! are deposited
onto an infinite line sequentially, uniformly, and at a const
rate per unit length. If a trial particle does not encounter a
preadsorbed disk, it adsorbs with a probabilityp. Otherwise,
it is rejected. If the trial particle is above a preadsorbed d
it rolls towards the surface up to one preadsorbed disk
following the path of steepest descent; if it eventua
reaches the line, the new disk is accepted with a probab
p8 and if not, it is rejected. Using appropriate dimensionle
variables, one can see that the process depends only o
ratio a5p8/p: for a50, only direct adsorption is allowed
which corresponds to the random sequential adsorp
~RSA! process@13#. For a51, we recover the ballistic depo
sition model@15#. In the limit a→1`, only deposition fol-
lowing contact with a preadsorbed disk is permitted afte
first seed particle is inserted, and this results in a clo
packed configuration. The parametera is thus a measure o
the efficiency of cluster formation.

If r(t) denotes the number density of particles on the l
at dimensionless timet, the kinetics of the GBD model is
given by the following rate equation:

dr~ t !

dt
5P~ l 51,t !12aP1~ l 51,t !, ~3!

where P( l ,t) is the probability density of finding a cavit
~i.e., an empty interval! of diameterat least l andP1( l ,t) is
the probability of finding a cavity of lengthat least l
bounded on at least one side by a particle.P( l ,t) is then
simply the cumulative probability function ofP1( l ,t),

P~ l ,t !5E
l

1`

duP1~u,t !. ~4!

To determineP( l ,t), we note that a cavity of diameterl
>1 can be destroyed by inserting particles that can eithe
completely within this cavity or can partially overlap th
right or the left sides of the cavity@16#. The time evolution
of the probability functionP( l ,t) can then be expressed a

2
]P~ l ,t !

]t
5~ l 21!P~ l ,t !12E

0

1

duP~ l 1u,t !

12aE
0

1

duP1~ l 1u,t ! for l>1. ~5!

Inserting the ansatz

P~ l ,t !5ha
2~ t !exp@2~ l 21!t# ~6!

in Eqs. ~4! and ~5! with the initial conditionP( l ,t50)51
gives
ic

:
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ha~ t !5expS 2E

0

t12e2u

u
du1a~12t2e2t! D , ~7!

and the number density of particles is then equal to

r~ t !5E
0

t

dt1~112at1!ha
2~ t1!. ~8!

Notice that the saturation state is reached exponentia
r(`)2r(t);exp(22at)/(at), for all nonzero values ofa,
whereas fora50 ~corresponding to the car parking proble
@17#!, the asymptotic kinetics is algebraic,r(`)2r(t);1/t.

III. NEAREST-NEIGHBOR FUNCTIONS

A. Void quantities

For r<1/2, because multiple overlaps are prohibite
HV(r ,t) is just twice the particle density,

FIG. 1. HV(r ,t) vs the distancer at different times (t
51,2,10) and for two values ofa: ~a! a50.1, ~b! a51.
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HV~r ,t !52r~ t !, r<1/2. ~9!

Combining Eqs.~1! and ~2!, one deduces that

EV~r ,t !5122rr~ t !, r<1/2, ~10!

GV~r ,t !5
1

122rr~ t !
, r<1/2. ~11!

FIG. 2. GV(r ,t) vs the distancer at different times (t
51,2,10) and for two values ofa: ~a! a50.1, ~b! a51.
Whenr>1/2, sinceEV(r ,t) is the probability of finding a
void of radiusr ~or diameter 2r ) empty of rod centers, one
hasEV(r ,t)5P(2r 21,t) andHV(r ,t)52P1(2r 21,t).

For 1/2<r<1, one has 0<2r 21<1. Therefore,EV(r ,t)
and HV(r ,t) are given by the knowledge ofP1( l ,t) for 0
< l<1. Considering all ways of creation and destruction o
cavity of length at leastl bounded on a side by a particle, th
time evolution of the probability functionP1( l ,t) can be
expressed as

FIG. 3. HP(r ,t) vs the distancer at different times (t51,2,10)
and for two values ofa: ~a! a50.1, ~b! a51.
]P1~ l ,t !

]t
52E

Max~0,12 l !

1

duP1~ l 1u,t !1P~11 l ,t !2aS E
Max~0,12 l !

1

duP2~ l 1u,t !1P1~1,t !2P1~11 l ,t ! D for l ,1,

~12!
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where P1( l ,t) is the cumulative probability function o
P2( l ,t). Notice that for 0, l ,1, P1( l ,t) depends on prob
ability functions for values ofl .1 that can be derived from
Eq. ~6!. Following a calculation, one obtains

P1~ l ,t !52E
0

t

dt8ha
2~ t8!e2 l t 8~11at8!2r~ t !, ~13!

which gives

HV~r ,t !52S E
0

t

dt82ha
2~ t8!e2~2r 21!t8~11at8!2r~ t ! D ,

~14!

EV~r ,t !5122~12r !r~ t !22E
0

t

dt8ha
2~ t !

3~11at8!
12e2~2r 21!t8

t8
, ~15!

with GV(r ,t) determined fromEV(r ,t) andHV(r ,t).
If r>1, the void quantities are simply obtained from E

~6!:

EV~r ,t !5ha
2~ t !exp@22~r 21!t#, ~16!

and, therefore,

HV~r ,t !52tha
2~ t !exp@22~r 21!t#, ~17!

GV~r ,t !5
t

r~ t !
. ~18!
.

Figure 1 displaysHV(r ,t) for a50.1 anda51.0 andt
51,2,10. Note the finite discontinuity atr 50.5 and the cusp
at r 51, which increase whena or t gets bigger.

The functionGV(r ,t) is shown in Fig. 2. It has the ex
pected discontinuity atr 50.5, consistent with the behavio
of HV(r ,t). In addition, a striking peak emerges in the neig
borhood of r 51 when t is larger than 1/a. As we have
previously noted this function is, contrary to appearance
long times,continuousat r 51 and its apparent divergenc
can be understood by examining the behavior ofHV(r ,t) and
EV(r ,t) for r close to 1: From Eq.~14!, the Taylor series for
HV(r ,t) at r 51 givesHV(r ,t)5a11b(12r ) wherea1.0
and b.0 and a1!b, if t.1/a. Similarly, one obtains for
EV(r ,t), EV(r ,t)5a21a1(12r )1b/2(12r )2 where a2
.0 and a2.a1. A simple analysis of the ratio
HV(r ,t)/EV(r ,t) shows that, although the functionGV(r ,t)
seems to diverge whenr is close to 1, it instead reaches
maximum value forr c512Aa2 /b and then decreases ver
rapidly betweenr c and 1. Clearly, the presence of clusters
the line significantly modifies the structure~of the void prob-
ability functions! compared with the RSA model@12#. Spec-
tacular differences have already been noted in the pair
relations of the GBD model@16#.

B. Particle quantities

Because of the hard-core interaction that prevents par
overlap, the particle nearest-neighbor functions have sim
expressions for 0<r<1:

EP~r ,t !51, HP~r ,t !50, GP~r ,t !50. ~19!

At r 51, HP(r ,t) has ad-singularity due to the existenc
of particles at contact@13#. Denoting the singular part o
HP(r ,t) at r 51 asHP(r ,t)5d(r 21)hP(t), one finds
d

ter
hP~ t !5
4a

r~ t !E0

t

dt1t1ha
2~ t1!2

2a2

r~ t !E0

t

dt1ha~ t1!e2at1E
0

t1
dt2ha~ t2!eat2S e22at22e22t2

2~12a!
1t2e2t2D . ~20!

Consequently,EP(r ,t), which is the cumulative probability ofHP(r ,t), exhibits a discontinuity atr 51.
Whenr>1, sinceEP(r ,t) is the probability of finding a void of a radiusr ~or diameter 2r ) empty of rod centers centere

on a rod center, one has

rEP~r ,t !5P~r 21,r 21,t !, ~21!

rHP~r ,t !52P1~r 21,r 21,t !, ~22!

where P(r 21,r 21,t) denotes respectively the probability of finding two neighboring cavities of diameterat least r21
separated by one particle, andP1(r 21,r 21,t) the probability density of finding two neighboring cavities, one of diame
r 21 and another of diameterat least l2 separated by one particle. Exact expressions of the cavity functions,P(r 21,r
21,t) andP1(r 21,r 21,t), can be obtained. Details of the calculation are given in the Appendix.

For 1<r<2, inserting Eqs.~A6! and ~A7! in Eqs.~21! and ~22! leads to

r~ t !EP~r ,t !5E
0

t

dt1ha
2~ t1!H e22~r 21!t122F ~11at1!S 12e2~r 21!t1

t1
D 1aGe22at12e22t1

2~12a! J
12E

0

t

dt1ha~ t1!e2at1S ~11at1!
12e2~r 21!t1

t1
1aD E

0

t1
dt2ha~ t2!eat2~e2t22e2~r 21!t2!

3F ~11at2!
e22at22e22t2

2~12a!t2
1e2t2G , ~23!

and
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r~ t !HP~r ,t !5E
0

t

dt1ha
2~ t1!F2t1e22~r 21!t122~11at1!e2~r 21!t1

e22at12e22t1

2~12a! G
22E

0

t

dt1ha~ t1!e2at1~11at1!e2~r 21!t1E
0

t1
dt2ha~ t2!eat2~e2t22e2~r 21!t2!F ~11at2!

e22at22e22t2

2~12a!t2
1e2t2G

22E
0

t

dt1ha~ t1!e2at1S ~11at1!
12e2~r 21!t1

t1
1aD E

0

t1
dt2ha~ t2!eat1e2~r 21!t2

3F ~11at2!
e22at22e22t2

2~12a!
1t2e2t2G . ~24!

Using Eqs.~19! and ~23! one can verify thatEP(r 512)2EP(r 511)5hP .
For r>2, combining Eqs.~21! and ~22! and Eq.~A4! yields

EP~r ,t !5
ha

2~ t !

r~ t !

e22at2e22t

2~12a!
e22~r 22!t, ~25!

HP~r ,t !5
2tha

2~ t !

r~ t !

e22at2e22t

2~12a!
e22~r 22!t. ~26!

So, for r>2, GP(r ,t) andGV(r ,t) are identical and independent ofr .
It is worth noting that, fora.0, HP(r ,t) andGP(r ,t) are discontinuous atr 52. Figure 3 shows the regular part ofHP(r ,t)

for a50.1,1.0 and for different times. A strong peak inGP(r ,t) occurs forr close to 1~Fig. 4!. An argument similar to that
which we have given forGV(r ,t) explains this striking behavior. Even for a small value ofa, corresponding to a relatively
weak clustering effect, the nearest-neighbor functions are strongly modified compared to those obtained by an RSA
@12#. Note that Eq.~24! with a50 corrects Eq.~48! of Ref. @12# in which a term is missing in the last line of the equation~Fig.
4 of Ref. @12# is, however, correct!.

Finally, knowledge ofEP(r ,t) allows us to calculate the mean nearest-neighbor distancel as

l511E
1

`

drEP~r ,t !511
ha

2~ t !

2tr~ t !

e22at2e22t

2~12a!
1

1

r~ t !E0

t

dt1ha
2~ t1!H 12e22t1

2t1
22

e22at12e22t1

2~12a!

3F ~11at1!S 1

t1
2

12e2t1

t1
2 D 1aG J 1

2

r~ t !E0

t

dt1ha~ t1!e2at1E
0

t1
dt2ha~ t2!eat2F ~11at2!

e22at22e22t2

2~12a!t2
1e2t2G

3H F ~11at1!S 1

t1
2

12e2t1

t1
2 D 1aGe2t21S 11at1

t1
D12e2~ t11t2!

t11t2
2S 112at1

t1
D12e2t2

t2
J . ~27!
b -
e
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At small densities, the mean nearest-neighbor distance
comes

l.
1

2r
11. ~28!

This has the same leading behavior@r(t)21# at low density
as the equilibrium sticky hard rod system@18# at number
densityr, for which the exact expression forl is

l511expS 22abP

11abPD11abP

2abP
, ~29!

whereP is related tor by the equation of state@16#:

bP5
1

2aFA11
4ar

12r
21G . ~30!
e-The dependence ofl on r, for several values of the sticki
ness parametera, is illustrated in Fig. 5. The mean distanc
l between nearest neighbors for the sticky hard rod sys
increaseswith a for a given value of the density of particles
whereasl decreases witha for the GBD model. Conse-
quently,l for the sticky hard rod system, which is small
thanl for the GBD process whena is small, becomes large
whena increases. This amazing feature can be interpreted
the fact that particle configurations are more correlated
equilibrium than in the GBD process where deposited p
ticles cannot move once adsorbed.

IV. THEOREMS ON ISOTROPIC PACKINGS

The theorems on isotropic packings of identic
D-dimensional hard spheres derived by Torquato@7# do not
consider systems in which clusters can be formed. Clus
occur at equilibrium when interactions between partic
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contain a singular attractive part, as in the sticky hard
system@18# and in nonequilibrium processes, like the GB
model studied here. Using the definition ofGP(r ,t), it is easy
to convince oneself that for a system of clusters,
d-singularity arises at contact but at larger distances
function GP is continuous or exhibits at most finite discon
nuities. Therefore, two theorems of Ref.@12# should be re-
written as follows:

Theorem 1: For any ergodic ensemble of isotropic pac
ings of identical,D-dimensional hard spheres in which clu
tering is allowed andGP(11)<GP(r ) for 1,r<`,

l<11
exp~22DDfGP

s!

D2DfGP~11 !
, ~31!

whereGP(11) denotes the left limit atr 51 of the regular
part of GP(r ), GP

s the amplitude of thed singularity ofGP

at r 51 andf the packing fraction.

FIG. 4. GP(r ,t) vs the distancer at different times (t51,2,10)
and for two values ofa: ~a! a50.1, ~b! a51.
d

a
e

Theorem 2: For any ergodic ensemble of isotropic pac
ings of identical,D-dimensional hard spheres in which clu
tering is allowed and (12f)21<GP(r ) for 1,r<`,

l<11~12r!
exp~22DDrGP

s!

D2Dr
. ~32!

Proofs of these theorems proceed in a fashion very sim
to that in Ref.@7# and are not reproduced here. AsG(r ) has
no simple lower bound for any ergodic hard-sphere sys
with clustering, one cannot find a corresponding Theorem
that gives an upper bound for the mean nearest-neighbor
tance@7#. Note that when the singularity inGP disappears,
as, for instance, whena goes to 0 in the GBD model, on
recovers, as expected, the results obtained by Torquato@7#.

V. SUMMARY

We have derived analytic expressions for the near
neighbor distribution functions associated with a on
dimensional configuration of rods generated by a general
ballistic deposition process. The clustering mechanism
occurs in GBD profoundly modifies the shape of the neare
neighbor functions. Theorems on ergodic ensembles of
tropic packing of particles have been generalized to inclu
the case when clusters are present and were tested again
results obtained for the generalized ballistic deposit
model.
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FIG. 5. Mean distance between nearest-neighbor particles
density for various values ofa (a50,0.1,1,2). Thefull curves cor-
respond to the GBD model and the dashed curves correspond t
sticky hard rod model.
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APPENDIX

In order to obtain expressions for the particle neare
neighbor functions, we introduce three cavity probabil
functions:P( l 1 ,l 2 ,t) denotes the probability of finding two
neighboring cavities, one of diameterat least l1 and another
of diameterat least l2 separated by one particle,P1( l 1 ,l 2 ,t)
the probability density of finding two neighboring cavitie
one of diameterl 1 and another of diameterat least l2 sepa-
rated by one particle, andP2( l 1 ,l 2 ,t) the probability density
of finding two neighboring cavities, one of diameterat least
l 1 and another of diameterl 2 separated by one particle
m

t-

P( l 1 ,l 2 ,t) is then the cumulative probability density o
P1( l 1 ,l 2 ,t) andP2( l 1l 2 ,t):

P~ l 1 ,l 2 ,t !5E
l 1

1`

duP1~u,l 2 ,t !, ~A1!

P~ l 1 ,l 2 ,t !5E
l 2

1`

duP2~ l 1 ,u,t !. ~A2!

A kinetic equation can be written in a closed form:
]P~ l 1 ,l 2 ,t !

]t
52@Max~0,l 121!1Max~0,l 221!#P~ l 1 ,l 2 ,t !2E

Max~0,12 l 1!

1

duP~ l 11u,l 2 ,t !2E
Max~0,12 l 2!

1

duP~ l 1 ,l 21u,t !

1P~ l 11 l 211,t !2aS P@Max~1,l 1!,l 2 ,t#1P„l 1 ,Max~1,l 2!,t…2E
Max~0,12 l 1!

1

duP1~ l 11u,l 2 ,t !

2E
Max~0,12 l 2!

1

duP2~ l 1 ,l 21u,t ! D . ~A3!

The strategy to solve these coupled equations consists of considering the casel 1>1 and l 2>1. Using the ansatz
P( l 1 ,l 2 ,t)5F(t)e2( l 11 l 222)t in Eq. ~A3! leads to a time differential equation forF(t), which gives after calculation

P~ l 1 ,l 2 ,t !5ha
2~ t !

e22at2e22t

2~12a!
e2~ l 11 l 222!t. ~A4!

For 0< l 1,1 andl 2>1 using the ansatz

P~ l 1 ,l 2 ,t !5ha~ t !p~ l 1 ,t !e2~ l 221!t, ~A5!

and Eq.~A4!, Eq. ~A3! can be integrated and one obtains

p~ l 1 ,t !5ha~ t !
e22at2e22t

2~12a!
2e2atE

0

t

dt1ha~ t1!eat1~e2t12e2 l 1t1!F ~11at1!
e22at12e22t1

2~12a!t1
1e2t1G . ~A6!

For 0< l 2,1 andl 1>1, P( l 1 ,l 2 ,t) is obtained from Eq.~A5! by permutingl 1 with l 2.
Finally, for 0< l 1<1 and 0< l 2<1, Eq. ~A3! can also be integrated andP( l 1 ,l 2 ,t) is expressed as

P~ l 1 ,l 2 ,t !5E
0

t

dt1ha~ t1!Fha~ t1!e2~ l 11 l 2!t12a@p~ l 1 ,t1!1p~ l 2 ,t1!#2~11at1!S 12e2 l 1t1

t1
p~ l 2 ,t1!1

12e2 l 2t1

t1
p~ l 1 ,t1! D G .

~A7!
. C.
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